
COP 3223: C Programming (Nested Control Structures) Page 1 © Dr. Mark J. Llewellyn

COP 3223: C Programming

Spring 2009

Nested Control Structures

School of Electrical Engineering and Computer Science

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cop3223/spr2009/section1

COP 3223: C Programming (Nested Control Structures) Page 2 © Dr. Mark J. Llewellyn

An Aside On Boolean Values In C

• The C89 standard for the C programming language does not

include the Boolean data type. (The C99 standard does, but not all

C compilers have yet adopted the C99 standard).

• A common solution to this problem that has been adopted by

many C programmers is to define your own definitions. This can

be done in two different ways. I’ll show you the most common

way first.

Define constants for both true and false as follows:

#define TRUE 1

#define FALSE 0

Then to use these values do something like:

int flag = FALSE; or int flag = TRUE;

COP 3223: C Programming (Nested Control Structures) Page 3 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Nested Control Structures) Page 4 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Nested Control Structures) Page 5 © Dr. Mark J. Llewellyn

An Aside On Boolean Values In C

• In the previous example notice that the conditional expression

used in the if statement had the form:

if (control)

rather than

if (control == TRUE)

• The first form is the preferred form because (1) it is more concise

and (2) the expression will still work correctly within the normal C

environment even if control has a value other than 0 or 1.

COP 3223: C Programming (Nested Control Structures) Page 6 © Dr. Mark J. Llewellyn

An Aside On Boolean Values In C

• The other way of accomplishing this is to use the typedef

statement to define a user defined type that can be used as a

synonym for the built-in type it is based on:

typedef int Boolean;

then declare a variable to be of this newly defined type as in:

Boolean control;

• As the example program on the next page illustrates this

technique, which is often combined with the first technique to

define a complete definition of a Boolean type (i.e., the definitions

for true and false are also used).

• We’ll do more with the typedef statement later.

COP 3223: C Programming (Nested Control Structures) Page 7 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Nested Control Structures) Page 8 © Dr. Mark J. Llewellyn

Nesting Control Structures

• We’ve seen the three selection statements (if, if…else, and

switch) and the three repetition statements (while,

do…while, and for) in isolation, but their real power comes

from combining them together in sequence (the third control

structure).

• The sequence in which the statements of a C program can are

ordered is, of course, dependent upon the problem that the

program is designed to solve.

• Recall that every selection and repetition statement has in its

body a statement. There is no restriction on what that

statement or statements might be. So far, we’ve basically

just had simple arithmetic expressions or I/O expressions in

the body of our control statements.

COP 3223: C Programming (Nested Control Structures) Page 9 © Dr. Mark J. Llewellyn

Nesting Control Structures

• Whenever a control structure statement includes, within its

body, another control structure statement, the structures are

said to be nested control structures or more commonly just

nested statements.

• To illustrate the concept of nesting control statements, let’s

consider the following problem:

– We want to print all the integer numbers between 1 and 30 and

determine for each number if the number is odd or even and print

this along with the number.

• Clearly, our solution will involve a loop that will allow us to

operate on the first 30 integer numbers, but for each number,

we also need to make a decision (i.e., a selection) about the

number so we can print whether it is odd or even.

COP 3223: C Programming (Nested Control Structures) Page 10 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Nested Control Structures) Page 11 © Dr. Mark J. Llewellyn

Same program as on page 10, but with a different

structure (and slightly different output as well). Which

is more efficient from an execution point of view?

Answer: the one on page 10, it has only 1 loop.

COP 3223: C Programming (Nested Control Structures) Page 12 © Dr. Mark J. Llewellyn

Nesting Control Structures

• In the section of notes that covered selection statements, we

saw an example of nested if…else statements (see page 19

of Control Structures – Part 2).

• That example, was mainly to illustrate the preferred

indentation style for nested if…else statements. However,

we mentioned at the time that the C compiler uses a

proximity rule when associating else clauses with if

statements.

• More clearly stated this rule is:

An else clause belongs to the nearest if

statement that has not already been

paired with an else clause.

COP 3223: C Programming (Nested Control Structures) Page 13 © Dr. Mark J. Llewellyn

Nesting Control Structures

• Notice that this is another reason to always use the braces (to

make statement blocks) even if only one statement is

contained inside the control statement.

• So, in this case we would have written:

if (y != 0) {

if (x != 0) {

result = x / y;

}//end if stmt

}

else {

printf(“Error… y is 0\n”);

}//end if…else stmt

COP 3223: C Programming (Nested Control Structures) Page 14 © Dr. Mark J. Llewellyn

Nesting Control Structures
• Failure to properly follow the nesting rules for if…else

statements can get you into trouble. The problem is more

commonly known as the dangling else problem. The

problem below illustrates the dangling else problem.

• For each chunk of code assume x = 9 and y = 11, and

then repeat assuming x = 11 and y = 9. What is the

output in each case?

if (x < 10)

if (y > 10)

printf(“****\n”);

else

printf(“####\n”);

printf(“$$$$\n”);

if (x < 10) {

if (y > 10)

printf(“****\n”);

}

else {

printf(“####\n”);

printf(“$$$$\n”);

}

(a)
(b)

if (x < 10) {

if (y > 10) {

printf(“****\n”);

}

else {

printf(“####\n”);

printf(“$$$$\n”);

} }

(c)

COP 3223: C Programming (Nested Control Structures) Page 15 © Dr. Mark J. Llewellyn

if (x < 10)

if (y > 10)

printf(“****\n”);

else

printf(“####\n”);

printf(“$$$$\n”);

if (x < 10) {

if (y > 10)

printf(“****\n”);

}

else {

printf(“####\n”);

printf(“$$$$\n”);

}

(a)
(b)

else

belongs

to inner
if

else

belongs

to outer
if

outside

of
if…else

inside

else

clause

COP 3223: C Programming (Nested Control Structures) Page 16 © Dr. Mark J. Llewellyn

(c)

if (x < 10) {

if (y > 10) {

printf(“****\n”);

}

else {

printf(“####\n”);

printf(“$$$$\n”);

} }

else

belongs

to inner
if outer if

ends

here

COP 3223: C Programming (Nested Control Structures) Page 17 © Dr. Mark J. Llewellyn

Using The Math Library
• We’ve been using the standard input/output library since we

wrote our very first C program. How the printf statement is

defined is contained in the stdio library header file. Since all

of our programs have made use in some fashion of the scanf

and printf statements, we’ve included this library header

file in all of our programs so far.

• So far, this is the only header file that we’ve included in any of

our programs. That’s about to change as we now introduce the

standard math library in C.

• The standard library header file math.h contains the function

prototypes for mathematical functions that fall into five

different groups: trigonometric functions, hyperbolic functions,

exponential and logarithmic function, power functions, and

nearest integer, absolute value, and remainder functions.

COP 3223: C Programming (Nested Control Structures) Page 18 © Dr. Mark J. Llewellyn

Using The Math Library

Trigonometric Functions

double acos(double x);

double asin(double x);

double atan(double x);

double atan2(double x, double y);

double cos(double x); //argument in radians

double sin(double x); //argument in radians

double tan(double x); //argument in radians

Hyperbolic Functions

double cosh(double x);

double sinh(double x);

double tanh(double x);

COP 3223: C Programming (Nested Control Structures) Page 19 © Dr. Mark J. Llewellyn

Using The Math Library

Exponential and Logarithmic Functions

double exp(double x); //returns ex

double frexp(double value, int *exp);

double ldexp(double x, int exp);

double log(double x); //log base e

double log10(double x); //log base 10

double modf(double value, double *iptr);

Power Functions

double pow(double x, double y); //returns xy

double sqrt(double x); //returns square root of x

COP 3223: C Programming (Nested Control Structures) Page 20 © Dr. Mark J. Llewellyn

Using The Math Library

Nearest Integer, Absolute Value, and Remainder Functions

double ceil(double x); //returns ceiling of x –

//smallest integer greater than

//or equal to x – i.e. rounds

//up.

double fabs(double x); //returns absolute value of x

double floor(double x); //returns floor of x – largest

//integer less than or equal to

//x – i.e. rounds down.

double fmod(double x, double y); //returns the

//remainder when first

//argument is divided

//by the second.

COP 3223: C Programming (Nested Control Structures) Page 21 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Nested Control Structures) Page 22 © Dr. Mark J. Llewellyn

Practice Problems
1. Construct a C program that uses nested control structures to

produce the following multiplication table.

COP 3223: C Programming (Nested Control Structures) Page 23 © Dr. Mark J. Llewellyn

Practice Problems
2. Construct a C program that produces gear ratio charts for

bicycles. The gear ration is determined by the expression:

(size of front chainring / size of rear cog) * wheelsize

where typical chainring sizes are between 28 and 55 teeth and
typical cog sizes are between 11 and 25 teeth. The wheelsize is
the diameter of the rear wheel in inches.

COP 3223: C Programming (Nested Control Structures) Page 24 © Dr. Mark J. Llewellyn

Practice Problems
3. Construct a C program that produces the following output.

COP 3223: C Programming (Nested Control Structures) Page 25 © Dr. Mark J. Llewellyn

Practice Problems
4. Construct a C program that produces the following output.

